UMD Researcher Receives New $1M Vehicle Technology Award

UMD Researcher Receives New $1M Vehicle Technology Award

On July 16, 2020, the U.S. Department of Energy (DOE) announced $139 million in federal funding for 55 projects across the country that will support new and innovative advanced vehicle technologies. Funded through the U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE), projects will conduct research in advanced batteries, electrification, and manufacturing in support of DOE’s Energy Storage Grand Challenge. The University of Maryland received $1M for their research: “Rational Electrolyte Design for Li-ion Batteries with Micro-Sized Si Anodes”.  

The vision for the Energy Storage Grand Challenge is to create and sustain global leadership in energy storage utilization and exports, with a secure domestic manufacturing supply chain that does not depend on foreign sources of critical materials. Building on previous joint research efforts with Army Research Laboratory (ARL) partners, Dr. Chunsheng Wang, a professor of Chemical and Biomolecular Engineering at the University of Maryland and Maryland Energy Innovation Institute (MEI2) hopes to expand the capabilities of a recently developed electrolyte that forms a protective layer on silicon which is stable and resists the swelling that occurs in silicon anode particles. The PIs plan to extend the electrochemical stability window to >4.5 V by adding other inorganic salts, and/or partially- or all-fluorinated ether solvents into the electrolyte. The new electrolytes will allow the Si anode to couple with a high energy cathode to provide additional performance and prevent decomposition.

Said Wang, “We have designed the electrolytes to form lithiophobic solid electrolyte interphase (SEI) on micro-sized Silicon (Si). The lithiophbic SEI with weak bonding with Si can accommodate large volume changes of Si without damage, ensuring a long cycle and calendar life.”

“Increasing energy density is also important for numerous Army applications including conformal wearable batteries”, noted Dr. Oleg Borodin, a collaborator from ARL.

Additional news on this research published in Naturehttps://energy.umd.edu/news/story/highperformance-electrolyte-solves-battery-puzzle

July 17, 2020


Prev   Next



Current Headlines

University of Maryland Announces Launch of Research Leaders Fellows Program

UMD Rises to No. 19 in U.S. News Rankings of Top Public Colleges

Fu, Marcus Team for New AFOSR Project on Simulation Optimization

Multi-Institutional Team Receives $4.3 Million Grant to Master the Evolution of the Transition Between Land and Sea

Space Weather Mission Gets $1.25 Million and a Green Light for Feasibility Studies

UMD-Post Poll: Americans Prefer Not to Pack Polls on Election Day

Gifts and Grants Support HAIR Network’s COVID-19 Prevention and Mitigation Campaign

Cornelia Fermüller is PI for 'NeuroPacNet,' a $1.75M NSF funding award

News Resources

Return to Newsroom

Search News

Archived News

Events Resources

Events Calendar

Additional Resources

UM Newsdesk

Faculty Experts

Connect

social iconstwitterlinkedinrssYouTube
Division of Research
University of Maryland
College Park, MD 20742-1541
© Copyright 2017 University of Maryland

Did You Know

UMD's Neutral Buoyancy Research Facility, which simulates the weightlessness of space, is one of only two such facilities in the U.S.